Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.

Identifieur interne : 001186 ( Main/Exploration ); précédent : 001185; suivant : 001187

Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.

Auteurs : Jacqueline M. Benson [États-Unis] ; Jesse A. Poland [États-Unis] ; Brent M. Benson [États-Unis] ; Erik L. Stromberg [États-Unis] ; Rebecca J. Nelson [États-Unis]

Source :

RBID : pubmed:25764179

Descripteurs français

English descriptors

Abstract

Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties.

DOI: 10.1371/journal.pgen.1005045
PubMed: 25764179
PubMed Central: PMC4357430


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.</title>
<author>
<name sortKey="Benson, Jacqueline M" sort="Benson, Jacqueline M" uniqKey="Benson J" first="Jacqueline M" last="Benson">Jacqueline M. Benson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Integrative Plant Sciences, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Poland, Jesse A" sort="Poland, Jesse A" uniqKey="Poland J" first="Jesse A" last="Poland">Jesse A. Poland</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Kansas State University, Manhattan, Kansas</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Benson, Brent M" sort="Benson, Brent M" uniqKey="Benson B" first="Brent M" last="Benson">Brent M. Benson</name>
<affiliation wicri:level="2">
<nlm:affiliation>203 Solutions LLC, Baltimore, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>203 Solutions LLC, Baltimore, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stromberg, Erik L" sort="Stromberg, Erik L" uniqKey="Stromberg E" first="Erik L" last="Stromberg">Erik L. Stromberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Rebecca J" sort="Nelson, Rebecca J" uniqKey="Nelson R" first="Rebecca J" last="Nelson">Rebecca J. Nelson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Integrative Plant Sciences, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25764179</idno>
<idno type="pmid">25764179</idno>
<idno type="doi">10.1371/journal.pgen.1005045</idno>
<idno type="pmc">PMC4357430</idno>
<idno type="wicri:Area/Main/Corpus">001280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001280</idno>
<idno type="wicri:Area/Main/Curation">001280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001280</idno>
<idno type="wicri:Area/Main/Exploration">001280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.</title>
<author>
<name sortKey="Benson, Jacqueline M" sort="Benson, Jacqueline M" uniqKey="Benson J" first="Jacqueline M" last="Benson">Jacqueline M. Benson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Integrative Plant Sciences, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Poland, Jesse A" sort="Poland, Jesse A" uniqKey="Poland J" first="Jesse A" last="Poland">Jesse A. Poland</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Kansas State University, Manhattan, Kansas</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Benson, Brent M" sort="Benson, Brent M" uniqKey="Benson B" first="Brent M" last="Benson">Brent M. Benson</name>
<affiliation wicri:level="2">
<nlm:affiliation>203 Solutions LLC, Baltimore, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>203 Solutions LLC, Baltimore, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stromberg, Erik L" sort="Stromberg, Erik L" uniqKey="Stromberg E" first="Erik L" last="Stromberg">Erik L. Stromberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Rebecca J" sort="Nelson, Rebecca J" uniqKey="Nelson R" first="Rebecca J" last="Nelson">Rebecca J. Nelson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Integrative Plant Sciences, Cornell University, Ithaca, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (physiology)</term>
<term>Genetic Pleiotropy (MeSH)</term>
<term>Oxygenases (genetics)</term>
<term>Perylene (analogs & derivatives)</term>
<term>Perylene (pharmacology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Leaves (genetics)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Zea mays (classification)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ascomycota (physiologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Oxygénases (génétique)</term>
<term>Pléiotropie (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Pérylène (analogues et dérivés)</term>
<term>Pérylène (pharmacologie)</term>
<term>Zea mays (classification)</term>
<term>Zea mays (génétique)</term>
<term>Zea mays (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Perylene</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxygenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Perylene</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Pérylène</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Oxygénases</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Pérylène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Pleiotropy</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
<term>Pléiotropie</term>
<term>Polymorphisme de nucléotide simple</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25764179</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>e1005045</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1005045</ELocationID>
<Abstract>
<AbstractText>Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Benson</LastName>
<ForeName>Jacqueline M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poland</LastName>
<ForeName>Jesse A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benson</LastName>
<ForeName>Brent M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>203 Solutions LLC, Baltimore, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stromberg</LastName>
<ForeName>Erik L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Rebecca J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>5QD5427UN7</RegistryNumber>
<NameOfSubstance UI="D010569">Perylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DK0O6YH55G</RegistryNumber>
<NameOfSubstance UI="C026363">cercosporin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.8</RegistryNumber>
<NameOfSubstance UI="C020066">dimethylaniline monooxygenase (N-oxide forming)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058685" MajorTopicYN="N">Genetic Pleiotropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010569" MajorTopicYN="N">Perylene</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25764179</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1005045</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-14-02336</ArticleId>
<ArticleId IdType="pmc">PMC4357430</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 2012 Dec;125(8):1797-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22903692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1721-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):953-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 Sep;93(4):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24162345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jul;188(3):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 21;325(5943):998-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2007;6(3):8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Sep;96(3):363-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1360-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Feb;118(3):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 3;108(18):7339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Jan;100(1):72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19968551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1666-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 6;303(5659):808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2012 May;108(5):490-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22027895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Appl Microbiol. 2001 Aug;47(4):149-160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12483615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Sep;198(1):333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25009146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2014;15:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 7;325(5941):714-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 6;323(5919):1357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):902-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17461789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Jul;123(2):307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Feb;96(2):120-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:247-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 30;338(6111):1206-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jan;178(1):539-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2006;55:189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Mar;158(3):1267-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Sep;72(9):6070-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1409670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 7;325(5941):737-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2012 Oct;2(10):1145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23050225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Sep;90(9):1018-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Oct;87(10):1005-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kansas</li>
<li>Maryland</li>
<li>Virginie</li>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Benson, Jacqueline M" sort="Benson, Jacqueline M" uniqKey="Benson J" first="Jacqueline M" last="Benson">Jacqueline M. Benson</name>
</region>
<name sortKey="Benson, Brent M" sort="Benson, Brent M" uniqKey="Benson B" first="Brent M" last="Benson">Brent M. Benson</name>
<name sortKey="Nelson, Rebecca J" sort="Nelson, Rebecca J" uniqKey="Nelson R" first="Rebecca J" last="Nelson">Rebecca J. Nelson</name>
<name sortKey="Poland, Jesse A" sort="Poland, Jesse A" uniqKey="Poland J" first="Jesse A" last="Poland">Jesse A. Poland</name>
<name sortKey="Stromberg, Erik L" sort="Stromberg, Erik L" uniqKey="Stromberg E" first="Erik L" last="Stromberg">Erik L. Stromberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25764179
   |texte=   Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25764179" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020